Search results for "Newtonian space"

showing 5 items of 5 documents

Trace Operators on Regular Trees

2020

Abstract We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.

QA299.6-433Regular treeApplied Mathematics010102 general mathematicsnewtonian space01 natural sciencesAlgebraTrace (semiology)010104 statistics & probabilityregular treetrace operator31e0546e35potentiaaliteoriaGeometry and Topology0101 mathematicsfunktionaalianalyysiAnalysisTrace operatorMathematicsNewtonian space
researchProduct

Sharp capacity estimates for annuli in weighted R^n and in metric spaces

2017

We obtain estimates for the nonlinear variational capacity of annuli in weighted R^n and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted R^n. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted R^n, which …

31C45 (Primary) 30C65 30L99 31B15 31C15 31E0 (Secondary)annulusmetric spacequasiconformal mappingMathematical Analysisexponent setsp-admissible weightSobolev spaceradial weightMathematics - Analysis of PDEsAnnulus; Doubling measure; Exponent sets; Metric space; Newtonian space; p-admissible weight; Poincare inequality; Quasiconformal mapping; Radial weight; Sobolev space; Variational capacityMatematisk analysPoincaré inequalitydoubling measureFOS: MathematicsNewtonian spacevariational capacityAnalysis of PDEs (math.AP)
researchProduct

Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces

2003

Abstract We use the heat equation to establish the Lipschitz continuity of Cheeger-harmonic functions in certain metric spaces. The metric spaces under consideration are those that are endowed with a doubling measure supporting a (1,2)-Poincare inequality and in addition supporting a corresponding Sobolev–Poincare-type inequality for the modification of the measure obtained via the heat kernel. Examples are given to illustrate the necessity of our assumptions on these spaces. We also provide an example to show that in the general setting the best possible regularity for the Cheeger-harmonic functions is Lipschitz continuity.

Pure mathematicsMathematical analysisLipschitz continuityModulus of continuityCheeger-harmonicConvex metric spaceUniform continuityMetric spaceLipschitz domainPoincaré inequalityheat kerneldoubling measureMetric mapLipschitz regularitylogarithmic Sobolev inequalityMetric differentialhypercontractivityAnalysisNewtonian spaceMathematicsJournal of Functional Analysis
researchProduct

Trace and density results on regular trees

2019

We give characterizations for the existence of traces for first order Sobolev spaces defined on regular trees.

Trace (linear algebra)Mathematics::Analysis of PDEsBoundary (topology)01 natural sciencesMeasure (mathematics)Potential theorySet (abstract data type)Combinatoricsregular treeMathematics - Metric Geometry0103 physical sciencesEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsdensityMathematics::Functional Analysis010102 general mathematicsMetric Geometry (math.MG)Functional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisMathematics - Classical Analysis and ODEs010307 mathematical physicsTree (set theory)46E35 30L99funktionaalianalyysiAnalysisboundary traceNewtonian space
researchProduct

The annular decay property and capacity estimates for thin annuli

2016

We obtain upper and lower bounds for the nonlinear variational capacity of thin annuli in weighted $\mathbf{R}^n$ and in metric spaces, primarily under the assumptions of an annular decay property and a Poincar\'e inequality. In particular, if the measure has the $1$-annular decay property at $x_0$ and the metric space supports a pointwise $1$-Poincar\'e inequality at $x_0$, then the upper and lower bounds are comparable and we get a two-sided estimate for thin annuli centred at $x_0$, which generalizes the known estimate for the usual variational capacity in unweighted $\mathbf{R}^n$. Most of our estimates are sharp, which we show by supplying several key counterexamples. We also character…

Pure mathematicsProperty (philosophy)General Mathematicsthin annulusPoincaré inequality01 natural sciencesMeasure (mathematics)Upper and lower boundssymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsPointwiseApplied Mathematics010102 general mathematicsmetric spaceMetric Geometry (math.MG)31E05 (Primary) 30L99 31C15 31C45 (Secondary)kapasiteettiSobolev spaceSobolev spaceNonlinear systemMetric spaceannular decay propertyPoincaré inequalitydoubling measuresymbolsupper gradient010307 mathematical physicsweighted RnAnalysis of PDEs (math.AP)Newtonian spacevariational capacity
researchProduct